State-Of-The-Art Application Of Artificial Neural Network In Digital Watermarking And The Way Forward

نویسندگان

  • Rashidah F. Olanrewaju
  • Othman O. Khalifa
  • Aishah Abdalla
چکیده

Several high-ranking watermarking schemes using neural networks have been proposed in order to make the watermark stronger to resist attacks. The ability of Artificial Neural Network, ANN to learn, do mapping, classify, and adapt has increased the interest of researcher in application of different types ANN in watermarking. In this paper, ANN based approached have been categorized based on their application to different components of watermarking such as; capacity estimate, watermark embedding, recovery of watermark and error rate detection. We propose a new component of water marking, Secure Region, SR in which, ANN can be used to identify such region within the estimated capacity. Hence an attack-proof watermarking system can be achieved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study the Relationship between Digital Number Values from ETM+ Satellite Images and Soil Organic Matter Using Artificial Neural Network and Regression Models

Soil organic carbon (SOC) content plays a key role in soil biological, chemical and physical behavior and knowledge about its state and distribution is essential for the effective and sustainable use of soil. Laboratory measurements of SOC are costly and time consuming and have not the possibility to extend the results to similar areas. Recently, the use of remote sensing data for evaluation of...

متن کامل

Application of Wavelet Neural Network in Forward Kinematics Solution of 6-RSU Co-axial Parallel Mechanism Based on Final Prediction Error

Application of artificial neural network (ANN) in forward kinematic solution (FKS) of a novel co-axial parallel mechanism with six degrees of freedom (6-DOF) is addressed in Current work. The mechanism is known as six revolute-spherical-universal (RSU) and constructed by 6-RSU co-axial kinematic chains in parallel form. First, applying geometrical analysis and vectorial principles the kinematic...

متن کامل

Application of Artificial Neural Networks for Analysis of Flexible Pavements under Static Loading of Standard Axle

In this study, an artificial neural network was developed in order to analyze flexible pavement structure and determine its critical responses under the influence of standard axle loading. In doing so, more than 10000 four-layered flexible pavement sections composed of asphalt concrete layer, base layer, subbase layer, and subgrade soil were analyzed under the impact of standard axle loading. P...

متن کامل

The Application of Multi-Layer Artificial Neural Networks in Speckle Reduction (Methodology)

Optical Coherence Tomography (OCT) uses the spatial and temporal coherence properties of optical waves backscattered from a tissue sample to form an image. An inherent characteristic of coherent imaging is the presence of speckle noise. In this study we use a new ensemble framework which is a combination of several Multi-Layer Perceptron (MLP) neural networks to denoise OCT images. The noise is...

متن کامل

Determination of Suitable Operating Conditions of Fluid Catalytic Cracking Process by Application of Artificial Neural Network and Firefly Algorithm

Fluid Catalytic Cracking (FCC) process is a vital unit to produce gasoline. In this research, a feed forward ANN model was developed and trained with industrial data to investigate the effect of operating variables containing reactor temperature feed flow rate, the temperature of the top of the main column and the temperature of the bottom of the debutanizer tower on quality and quantity of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009